
Pricing Credit from Equity Options

Kirill Ilinski, Debt-Equity Relative Value Solutions, JPMorgan Chase∗

December 22, 2003

Theoretical arguments and anecdotal evidence suggest a strong link between credit qual-
ity of a particular name and its equity-related characteristics, such as share price and
implied volatility. In this paper we develop a novel approach to pricing and hedging credit
derivatives with equity options and demonstrate the predictive power of the model.

1 Introduction

Exploring the link between debt and equity asset classes has been and still is a subject of considerable
interest among researchers and practitioners. The largest interest had been among market participants
that dealt in cross asset products like convertible bonds and hybrid exotic options but also among those
that are trading equity options and credit derivatives. Easy access to structural models (CreditGrades,
KMV), their intuitive appeal and simple calibration enabled a historical analysis of credit market
implied by equity parameterisation. Arbitrageurs are setting up trading strategies in an attempt
to exploit eventual large discrepancies in credit risk assessment between two asset classes. In what
follows we will present a new market model for pricing binary CDS using implied volatility extracted
from equity option market instruments. We will show that the arbitrage relationship derived in
this paper can be enforced via dynamic hedging with Gamma-flat risk reversals. In this framework
the recovery rate is an external uncertain parameter which cannot be extracted from equity-related
instrument and is defined by the debt structure of a particular company. In trading the arbitrage-
related strategies, arbitrageurs have to have a view on the recovery or use analysts estimates to form
their own conservative assumptions.

Existence of simple structural models made it possible for the arbitrage community to participate
in the attempt to align the credit market with equity parameterised models. In the course of imple-
menting trading strategies based on structural models it became apparent that the models are not
true no-arbitrage models in the sense that they do not identify riskless arbitrage portfolios which can
be traded when market CDS prices deviate from the model predictions. From this perspective, the
structural models define some sort of ”fair value” in the same way as Capital Asset Pricing Model
defines an equilibrium ”fair value” for the share returns. The step which we are taking in this paper is
a derivation of a no-arbitrage approach to valuation of credit derivatives based on existence of an arbi-
trage portfolio of stocks and equity options such that trading the portfolio can enforce the no-arbitrage
relationship. The reader can look at the suggested here analysis as a generalisation of the standard
Black-Scholes analysis to the case of defaultable underlying assets. In this case CDS plays a role of
∗I am grateful to Miodrag Janjusevich, Andreja Cobeljic and Andre Segger for discussions and help in preparation

of this paper.
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a market asset which completes the market and allows to eliminate the default risk in the riskless
portfolio.

In the next section we briefly describe the volatility-linked model for valuing binary cds. Technical
details of the derivation are summarized in the Appendix. The model is then tested by building an
arbitrage trading strategy based on the arbitrage portfolio and the construction is back-tested for
a large number of actively traded credit names. The paper is concluded with remarks on possible
applications of the approach to trading long-term volatility products, hedging credit derivatives with
equity options and modelling forward starting equity options.

2 Credit Risk Reversal

The main idea of the model is to build an enforceable arbitrage trading strategy to hedge binary CDS
with equity and equity options. The strategy has to generate an arbitrage return if the price of the
binary CDS is not in line with the cost of the hedging strategy, thus prompting arbitrageurs to step
in and eliminate the mispricing. We saw before that the main problem of the structural models was
absence of the enforceable hedging strategy. This essentially means the absence of the price-regulating
mechanism and potentially large credit-equity decouplings. In the case of an enforceable arbitrage
strategy arbitrageurs enter the arbitrage position when the price deviations are large enough to cover
the model risk and transaction costs with the goal to benefit from either positive carry on the position
till the CDS expiry (if the deviations do not disappear) or capital gain (in case of ”washing out” of
the arbitrage).

The model makes the following assumptions. First, a credit event triggering the binary payment is
accompanied by a single jump of share price to zero after which the trading stops. Second, before the
credit event stocks and options can be traded continuously for a reasonable range of strikes. Below the
range of strikes will be within ∆ 15 put and ∆ 15 calls range1. Third, in normal market conditions the
stock price moves can be approximated by continuous diffusion-like process, possibly with stochastic
volatility and other complexities. We also assume no transaction costs for which can be accounted
later in the final result.

Let us consider a portfolio which is short a binary CDS of T years till maturity and notional equal
to $1. This instrument triggers no payment (no cash outflows) if there was no credit event and makes
a single payment of $1 in case of the event. By the definition the credit event is a dicrete event which,
as follows from the assumptions above, is accompanied by a jump in stock price to zero. Therefore, to
hedge the binary CDS a hedger has to build a portfolio which produces no cash flows during normal
trading and produces a single payment of $1 in case of the stock price jump to zero. The cost of carry
of this hedging portfolio should be equal to the cost of carry of the binary CDS thus defining its ”fair”
price.
Illustrative example: case of zero implied volatility skew. The first note we would like to
make relates to the connection between equity option skew and the binary CDS price. Simple analysis
shows that the CDS spread should be linear in implied volatility skew and has to be zero if the skew
is zero. Indeed, lets consider the following hedging strategy in the case of zero implied skew: every
day we establish a position in zero-Gamma zero-Vega risk reversals (long puts and short calls) with

1∆ 15 put is defined as the put with strike such that that the delta on the put is equal to -15%. Similarily, the ∆ 15
call a call with strike such that that the delta on the call is equal to 15%. The strikes obviously depend on the levels
of the implied volatility and the tenor of the options.
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symmetrical strikes Kc and Kp and maturity T :

KcKp = F 2
T

so that
d1,p = −d2,c , d2,p = −d1,c ,

where FT is the corresponding forward price and d1,p(c), d2,p(c) are the standard Black-Scholes nota-
tions:

d1,c =
ln (FT /Kc) + 1

2σ
2(T − t)

σ
√
T − t

, d2,c = d1,c − σ
√
T − t

d1,p =
ln (FT /Kp) + 1

2σ
2(T − t)

σ
√
T − t

, d2,p = d1,p − σ
√
T − t .

Zero-Gamma zero-Vega condition requires the ratio of the put/call notionals to be equal to
√
Kc/Kp =

Kc/FT . It is not difficult to check that such risk reversal has zero initial cost to enter. If the risk
reversal is delta-hedged, the only component of Daily P&L will be third moment, the realised skew. In
average the realised skew is close to zero to be consistent with Edgworth expansion and our assumption
of zero implied skew. In fact, even in the presence of implied volatility skew the realised skew is quite
small and can be even positive. Table 1 shows historical realised skew for 10 liquid stocks in the US and
Europe. This means that on average one can roll the delta-hedged risk reversal to new symmetrical
puts and calls at no cost. At the same time, the dynamical risk reversal position provides the credit
protection because in case of price jump to zero each put will generate KcKp

FT
= FT units of cash which

after compensating loss on the long delta from the hedge, can be used to cover the binary CDS. This
is where the non-linear nature of equity options step in because the convexity of the put payoff will
ensure larger gain on the put than the loss on the delta hedge. Since carrying the hedging portfolio
costs the hedger zero, the CDS spread has to be zero from no-arbitrage arguments. It is important
to emphasize that in this case the arbitrage is actually enforceable because we establish a pricing
relationship between directly tradeable instruments. This shows that the CDS spread comes from the
implied volatility skew and, generally, has to compensate the carry cost of the risk reversal position
which is linear in skew for sufficiently small skews. Hence the CDS price has to be linear in skew as
well.
General case: non-zero implied volatility skew. To hedge binary CDS in the case of presence
of implied volatility skew we will again establish a daily position in a delta-neutral risk reversal which
has zero-Gamma (but non-zero Vega) and which generalizes the symmetrical case considered above.
Below we call this risk reversal structure a Credit Risk Reversal. We introduce calls with strikes Kc

with d1,c = d and puts with stikes Kp such that d1,p = −d2,c. The portfolio will contain Kc
FT

long
puts and σc,T

σp,T
short calls with maturity T . It is checked in the Appendix that the portfolio has zero

Gamma.
To make the consideration more analytically tractable we make several approximations. We assume

Log-Linear implied volatility skew:

σc,T = σA,T + βT ln
FT
Kc

, σp,T = σA,T + βT ln
FT
Kp

,

where σA,T is the ATM (forward) volatility for maturity T and βT is the corresponding skew. We also
use the small volatility expansion:

|d1,c| >>
1
2
σc,T
√
T − t , |d1,p| >>

1
2
σp,T
√
T − t ,
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so that d1,c ∼ d2,c and2

ln
FT
Kc

= d1,cσc,T
√
T − t , ln

FT
Kp

= −d1,cσp,T
√
T − t .

The last approximation is the small skew expansion:

β|d1,c|
√
T − t << 1

so that3

σc,T = σA,T + βT d1,cσA,T
√
T − t , σp,T = σA,T − βT d1,cσA,T

√
T − t .

The approximations limit the range for |d1,c| to [0.6, 1.5]. In what follows we use |d1,c| ∼ 1.
In these approximations the daily P&L on the Credit Risk Reversal which generates $1 in case of

default

HedgeP&Ldaily =
dN ′(d)

Df − 2N(d)

( (
∆S
S

)3
3σ2

A,T (T − t)
+ 2βTσA,T − 2(T − t) (d(βTσA,T ) + βd(σA,T ))

)
.

as derived in the Appendix. If one neglects the discount factors, after integration over the life time
of binary cds this gives the amount which in total has to be paid to the CDS seller for providing the
credit protection (Eqn (8 in Appendix):

HedgeP&L =
dN ′(d)

1− 2N(d)

T−1∑
i=t

(
∆Si+1
Si

)3

3σ2
A,T (τi)(T − τi)

+ 2(T − t)βT (t)σA,T (t)− 2
∫ T

t

(T − τ)βT (τ)d(σA,T (τ))

 .

For d = −1 the numerical factor in front is equal to 0.35 which corresponds to ∆ 16 calls.4

Current price of the binary CDS is defined by expectation of the right hand side of the last equation.
More precisely, the upfront price of the cds is equal to the expected cost of carry of the Credit Risk
Reversal position:

cdsupfront =
−dN ′(d)

1− 2N(d)

Et
T−1∑
i=t

(
∆Si+1
Si

)3

3σA,T (τi)2(T − τi)

+ 2(T − t)βT (t)σA,T (t)− 2
∫ T

t

(T − τ)Et(βT (τ)d(σA,T (τ)))

 .

There are three terms contributing to the price of the cds. The first one is the expected realised skew
accumulated by the risk reversal position over the life of the hedging strategy. We saw above (see
Table 1) that this term is on average negligable comparing with the cost of carry of the position and

2Example: σ ∼ 0.5, T − t = 5 gives 1
2
σ
√
T − t ∼ 0.6. d1,c = −0.67 corresponds to ∆call = 0.25. This puts downside

boundary on d1,c to be used.
3Example: β ∼ 0.3, T − t = 5 gives 1

β
√
T−t ∼ 1.5. This puts upside boundary on d1,c to be used.

4Strictly speaking, T in (8) has to be equal to the minimum between the CDS maturity and expected time of default.
Since the expected time to default is a function of the default probability and, therefore, the binary CDS price, this
introduces non-linearity into the equation decreasing the expected hedging costs. For long-term contracts or bad credit
this might be quite significant. It is possible to estimate the expected time to default as 1/p where p is the binary CDS
price (paid annually). This time is usually much larger than the life of the contract. In what follows we ignore the
complication.
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we can safely ignore it. The second term is directly expresses the cost of carry as implied by the
current equity option market. This term is proportional to the skew as expected and generates Vega
of the CDS with respect to the equity volatility. Since βT (t) is approximately equal to the 1Y skew
scaled by the square root of time to maturity, β1Y /

√
T − t, the vega of the CDS is proportional to√

T − t in line with time dependence of vanilla options vegas.
The third term has a more complicated nature. It is generated by the expected changes in the

implied volatility levels and, in principle, has to be priced from a stochastic implied volatility model.
However, to get a simplified picture, we make the following approximations:

1. As above, βT (τ) = β1Y /
√
T − τ .

2. d(σA,T (τ)) = d(σA,1Y (τ))/
√
T − τ , flat Power Vega P&L.

3. Forward skew is propagated at 1, which means that Et(β1Y (τ)) = β1Y (t) and is independent on
the ATM volatility level.

All these approximations are empirically sufficiently accurate to estimate the interesting term without
going into much details about choice of the stochastic implied volatility model. This results in the
following form of the third term∫ T

t

(T − τ)Et [βT (τ)d(σA,T (τ))] = β1Y (t)Et(σA,1Y (T ))− β1Y (t)σA,1Y (t) ,

which can be estimated from the current term structure. This reduces the above expression to the
simple analytical form:

cdsupfront = −2
dN ′(d)

1− 2N(d)
((T − t)βTσA,T − 2β1Y (t)Et(σA,1Y (T )) + 2β1Y (t)σA,1Y (t)) .

This form is applied below to test predictive power of the model.

3 Testing the Model

The model described in the previous section not only identifies the ”fair” value for the CDS but also
prescribes the set of actions to be taken if the market value deviates from the model ”fair” value thus
providing means to enforce the model arbitrage. Therefore one of possible ways to test the model is
to back-test an arbitrage trading strategy which is based on the model.

To examine the predictive power of the model we used historical data for CDS, stock prices and
implied volatility surfaces taken from a JPMorgan proprietary database. First, the model is run to
get the history of model spreads implied by option prices. Then trading signals are identified. This is
done automatically by specifying the difference between theoretical and market spreads at which to
enter the trade and one at which to close the position. During the life of the trade positions are delta-
hedged and rolled when necessary. Sum daily P&Ls represents the cumulative P&L of the strategy
for a particular name.

To explain the testing procedure we run the model for Altria Group Inc(Bloomberg: MO US).
Figure 1 shows senior 5Y CDS levels against the volatility-based model at recovery rate 0.5. One can
see that market CDS levels are tightly correlated with the theoretical levels dictated by the model
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and the basis, the difference between the market levels and the theoretical levels, is strongly mean-
reverting. This allows us construct a strategy which trades the basis: buy CDS and sell the Credit
Risk Reversal if the basis is negative and sell CDS and buy Credit Risk Reversal if the basis is positive.
Example of the trade would be as follows.

Example. On April 4 an arbitrageur sells 5Y CDS at 545 bps for $6 mm notional, sells 320 000
calls with strike 40 and maturity Jan 2005 (bid at 2.2, 30% delta) and buys 560 000 puts with the same
maturity and the strike 15 (offered at 2.1, -16% delta). The position is Gamma-flat and is ∆-hedged
by buying 185600 synthetic forwards at 24.14 level. The Break Even Recovery is 35% assuming stock
goes to 0 on default. On April 15 the arbitrageur closes the position with CDS traded at 350 bps,
puts traded at 1.07, calls traded at 3 and stock comming up to 32.80 and forward being at 29.47. The
trade P&L is $671250 which is about $200000 better than P&L for the delta-hedging (E2C) strategy.

It is possible to back-test the arbitrage trading based on the Credit Risk Reversal similar to the
example above. Figure 2 demonstrate running cumulative P&L on the strategy based on two year
trading history. In the simulation we assumed 120 bps basis spread as an entry signal for the trade
and 10 bps as the signal to close the position. The figure shows that the strategy generates positive
return with relatively small P&L fluctuations. Figures 3 and 4 show the results of the analysis for
basis trading for Suez SA (Bloomberg: SZE FP). The charts also demonstrate profitability of the
arbitrage trading based on the Credit Risk Reversal model. Figures 5 and 6 show the results for
TYCO International ltd (Bloomberg: TYC US) as an example of running the strategy for a cross-over
credit name.

We have run the analysis for 20 actively traded credit names in Europe and 20 names in the US.
All them demonstarte qualitatively similar results. Overall the strategy is profitable and generates
relatively small P&L noise. This demonstrates that the arbitrage model for CDS pricing in terms
of dynamical equity option strategy correctly identifies the fair value of CDS and is suitable for
enforcing the no-arbitrage relationship as it is claimed in the technical part of the paper. We also
compared trading performance of the Credit-Volatility strategy with performances of standard debt-
equity trading strategies. Table 2 shows three P&Ls on trades in Suez SA which are motivated by
CeditGrades-based strategy, static CDS vs puts strategy and the Credit-Volatility strategy. The Table
shows that the latter produces superior result comparing with other strategies.

4 Discussion of Possible Applications

The Credit-Volatility model presented in this paper allows one to identify profitable mispricing oppor-
tunities between credit and equity option markets and, what is more important, prescribes a course of
actions to extract the arbitrage return in the case of the mispricing. These actions do not depend on
whether the mispricing persists or not and it is not particularly sensitive to the choice of the model.
We saw above that the US market shows tighter relationship between the equity options and CDS,
with shorter mean-reversion times and a smaller decoupling. Names in Europe demonstrate less tight
picture thus providing bigger potential for relative value trades. As more market participants recog-
nize the relationship, it becomes more tight and stable which will diminish arbitrage returns but opens
new interesting applications of the credit-volatility connection. We list here three possible directions
which appear to be especially promising.

1. Long-term volatility products. It follows from our analysis that credit derivatives are a source of
long term implied volatility. It must be said that most of equity options are liquid up to 2-3 years
maturity and it is not immediately clear how long-term options have to be priced and hedged.
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In this respect, credit derivatives, which are most liquid in 5 years but are available for much
longer maturities, can be used effectively to hedge options vega exposure if some conservative
assumptions about recovery rates are made.

2. Hedging credit derivatives with equity options. Currently most models of options on credit
default swaps are valued in the Black-Scholes framework which implies a possibility of continuous
hedging. At the same time, the underlying CDS are traded in relatively large size, typically 3-
5 mln dollars. This precludes the continuous hedging and leaves swaptions market makers
with considerable market risk. Equity options can be traded in small size thus allowing quasi-
continuous dynamical hedging of swaptions, if the credit-relationship is sufficiently tight.

3. Forward starting equity options. Trading credit default swaps for different maturities it is possi-
ble to create forward starting CDS position. Applying the credit-volatility model to the pricing
of forward starting CDS one can establish boundaries for forward starting implied volatilties
which can be used to price and hedge forward starting options. In this way the term structure
of credit default swaps sheds light on structure of forward ATM volatilities and forward skews.
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5 Appendix. Cost of Carry for Credit Risk Reversal

In this Appendix we derive the expression for the cost of carry of Credit Risk Reversal used in the
main text. As explained above, to hedge binary CDS in presence of implied volatility skew one has to
establish a daily position in delta-neutral risk reversal with zero Gamma but generally non-zero Vega.
The new risk reversal consists of σc

σp
short position in calls with strikes Kc with d1,c = d and Kc

F long
position in puts with stikes Kp such that d1,p = −d2,c.

First of all, it is easy to check that the portfolio has zero Gamma. Indeed,

S2Γcall = Df−1FT
N ′(d1,c)

σc,T
√
T − t

and

S2Γput = Df−1FT
N ′(d1,p)

σp,T
√
T − t

where Df is the corresponding discount factor. Since d1,p = −d2,c one can rewrite the last relation as

S2Γput = Df−1FT
N ′(d1,c)

σp,T
√
T − t

eσc,T
√
T−td1,c− 1

2σ
2
c,T (T−t) .

Using the explicit form for d1,c we arrive at the expression

S2Γput = Df−1FT
N ′(d1,c)

σc,T
√
T − t

e−ln(Kc/FT ) σc,T
σp,T

.

which provides that
Kc

FT
Γput −

σc,T
σp,T

Γcall = 0 .

Therefore the Gamma of the portfolio is equal to zero.
The next step is to calculate Vega or, rather, daily Vega P&L of the portfolio. This is easy to do

if one uses the relationship
V egacall = S2Γcallσc,T (T − t) ,

V egaput = S2Γputσp,T (T − t) .

The relationship gives the following Vega P&L for the portfolio

V egaP&L = Df−1FTN
′(d1,c)

√
T − t

(
d(σp,T − σc,T ) + d(σc,T )(1− σc,T

σp,T
)
)
. (1)

Theta for the portfolio is a little more complicated.

θcall = −Df−1FT
σc,T

2
√
T − t

N ′(d1,c) +DivDf−1FTN(d1,c)− rKcDfN(d2,c) ,

θput = −Df−1FT
σp,T

2
√
T − t

N ′(−d1,p)−DivDf−1FTN(−d1,p) + rKpDfN(−d2,p) .
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Our portfolio can be delta-hedged with forwards so that one can ignore the dividend component of
Theta. We also neglect the interest rate component which would result in the following expression for
the Theta of the portfolio:

θportfolio = Df−1F
N ′(d1,c)
2
√
T − t

(
σ2
c,T

σp,T
− σp,T

)
. (2)

The last bit we will need is the delta of the Credit Risk Reversal:

S∆CRR = Df−1FT

(
Kc

FT
(N(−d2,c)− 1)− σc,T

σp,T
N(d1,c)

)
. (3)

Under the three approximations described in the main text, the P&L components will be equal to:

V egaP&L = Df−1FTN
′(d1,c)

√
T − t

(
−2
√
T − t · d1,c · d(βTσA,T )− 2

√
T − td1,c

(
βTσA,T
σA,T

)
d(σA,T )

)
,

(4)

θportfolio = Df−1FT
N ′(d1,c)
2
√
T − t

(
(σc,T − σp,T )(σc,T + σp,T )

σp,T

)
= 2Df−1FTN

′(d1,c)d1,c (βTσA,T ) . (5)

To address the notional of the portfolio one has to consider the default scenario. In case of default
the delta-hedged portfolio has to generate $ 1 to cover the payment on the binary CDS. Therefore the
notional has to be

1

FT
KcKp
F 2
T
− (1 + e−d1,cσc,T

√
T−t)FTDf−1N(d1,c)

which in low order on ATM volatility and skew order 5 gives

Df

FT

1
Df − 2N(d1,c)

. (6)

Let’s return back to the Gamma P&L. We showed earlier that the Gamma of the portfolio is equal
to zero. However, this does not imply that daily Gamma P&L will be equal to zero because the price
distribution can have a non-zero third moment which will contribute to the P&L.

Suppose we rehedge daily and Γ on the position is equal to zero at last close. This implies that

Γ = −α(S − S0)

and
ΓP&L = −α

6
(S − S0)3 .

Since
∂Γcall
∂S

= −FTDf
−1

S3

N ′(d1,c)
σc,T
√
T − t

− FTDf
−1

S3

d1,cN
′(d1,c)

σ2
c,T (T − t)

5The P&L components are already proportional to the skew and ATM volatility. Thus in the small skew/small vol
expansion the skew effect on the notional can be ignored. We also neglect cost of establishing CRR position because it
is too proportional to the skew.
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and
∂Γput
∂S

= −FTDf
−1

S3

N ′(d1,p)
σp,T
√
T − t

− FTDf
−1

S3

d1,pN
′(d1,p)

σ2
p,T (T − t)

,

one obtains
∂Γportfolio

∂S
=
FTDf

−1

S3

d1,cN
′(d1,c)

(T − t)

(
1

σ2
p,T

+
1

σp,Tσc,T

)
.

Therefore in our case the constant α is equal to

α = −2
FTDf

−1

S3

d1,cN
′(d1,c)

σ2
A,T (T − t)

and the daily Gamma P&L has the form:

ΓP&L = 2FTDf−1 d1,cN
′(d1,c)

6σ2
A,T (T − t)

(
∆S
S

)3

(7)

Collecting together equations (4), (5), (7) and (6) we obtain the following daily cost of hedging of
our binary CDS:

HedgeP&Ldaily =
d1,cN

′(d1,c)
Df − 2N(d1,c)

( (
∆S
S

)3
3σ2

A,T (T − t)
+ 2βTσA,T − 2(T − t) (d(βTσA,T ) + βT d(σA,T ))

)
.

Integrating over time one can find the total cost of carry for the hedging position and, therefore, the
total payment for the CDS protection. This means that, ignoring discount factors, the CDS price
(paid upfront) is equal to the expected cost of hedging

cdsupfront =
−d1,cN

′(d1,c)
1− 2N(d1,c)

Et

T−1∑
i=t

(
∆Si+1
Si

)3

3σ2
A,T (τi)(T − τi)

− 2
∫ T

t

d((T − τ)βT (τ)σA,T (τi))− 2
∫ T

t

(T − τ)βT (τ)d(σA,T (τ))

 ,

or, after integration,

cdsupfront =
−d1,cN

′(d1,c)
1− 2N(d1,c)

Et

T−1∑
i=t

(
∆Si+1
Si

)3

3σ2
A,T (τi)(T − τi)

+ 2(T − t)βT (t)σA,T (t)− 2
∫ T

t

(T − τ)βT (τ)d(σA,T (τ))

 .

(8)
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Figures

Figure 1. Market levels of 5Y cds on Altria Group Inc versus theoretical (volatility-based) value.
Recovery value taken is 0.5.
Figure 2. Cumulative historical P&L of the arbitrage basis trading strategy for Altria Group Inc.
Entry difference is 120, exit difference is 10.
Figure 3. Market levels of 5Y cds on Suez SA versus theoretical (volatility-based) value. Recovery
value taken is 0.75.
Figure 4. Cumulative historical P&L of the arbitrage basis trading strategy for Suez SA. Entry
difference is 50, exit difference is 5.
Figure 5. Market levels of 5Y cds on TYCO International Ltd versus theoretical (volatility-based)
value. Recovery value taken is 0.40.
Figure 6. Cumulative historical P&L of the arbitrage basis trading strategy for TYCO International
Ltd. Entry difference is 110, exit difference is 10.

Tables

Table 1. Normalized third moment <
(
dS
S

)3
> / <

(
dS
S

)2
> of historical daily returns for some active

credit names in Europe and the US. The table gives 6 months and 1 year historical third moments
averaged over last four years. The reader can see that the contribution from the moment to the CDS
price is small and on average can be neglected.

Name 6M 1Y
MOUS 0.004 0.011
FUS 0.011 0.006

GMUS −0.009 −0.003
IBMUS −0.003 −0.001
JPMUS −0.013 −0.012
DTEGR 0.017 0.012
SIEGR 0.011 0.009
FTEFP 0.082 0.071
EXFP −0.055 −0.055

UBSNVX 0.003 0.003

Table 2. Table shows results of debt-equity trades for Suez SA based on CeditGrades (1), static CDS
vs puts strategy (2) and the Credit-Volatility strategy(3). The latter strategy produces superior result
comparing with first two strategies.
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